10
octubre

Matemáticas y ADN (3)

 

También hay secuencias que forman los palindromos interrumpidos(3)

Las secuencias palindrómicas de los artículos anteriores son palíndromos continuos (o también llamados ininterrumpidos), pero también existen otras secuencias similares denominadas palíndromos interrumpidos. Son secuencias palíndromo que justo en medio se ha introducido 1, 2, 3, 4,….unidades que no son palindrómicas. (En lo sucesivo, mientras no indiquemos lo  contrario, hablaremos de secuencias y no haremos referencia a ADNs diferentes).

Ejemplo: ATCGT GGT ACGAT . Las unidades subrayadas forman un palíndromo,  interrumpido por una secuencia –en este caso de 3 unidades-que no igualaría la secuencia de la otra hebra en ese tramo, mientras que las adyacentes subrayadas sí.

Estas secuencias hacen que tanto los tramos de unidades pares como las impares puedan formar palíndromos interrumpidos.

Podemos igualmente aproximarnos a calcular su número, en función del número total de unidades de la secuencia.

En general podemos denominar a estos palíndromos interrumpidos del siguiente modo: P(n)-NP(m)-P´(n); siendo P(n) y P´(n) los tramos palíndomo de “n” (nº de unidades) y NP(m) el tramo no palíndromo de “m” (nº de unidades de ese tramo).

¿Podemos calcular el nº de secuencias posibles por ejemplo del  P(6)- NP (5)-P´(6); o sea un tramo de 17(6+5+6) unidades?. Pongámonos a ello partiendo de casos sencillos y busquemos, como en artículos  anteriores, una fórmula general que nos lo indique.

 

1.-Palíndromo interrumpido de 3 unidades

En este caso no pueden existir secuencias palíndromo continuos ya que un nº impar de unidades lo impide y sólo cabe el caso indicado a continuación.

1.a.- (P (1) – NP (1) – P´(1))

P: secuencia que forma el palíndromo/ NP: secuencia que no lo forma

P: puede tener 41 combinaciones posibles  que lo harían palíndromo en posiciones P y P´; respectivamente(A y T; T y A; Gy C y Cy G), cada una de ellas junto con las 4 posibles de NP (A,T,G,C), lo que haría un total de 41 x 41 = 42

 

 2.- Palíndromos de 4 unidades

2 casos posibles de palíndromo.

2.a.-Caso 1 (P (2)- NP (0)- P´(2)- Palíndromo continuo

En el continuo, los 2 primeros nucleótidos determinan los 2 siguientes para que se cumpliera la condición de palíndromo. Por tanto 42 combinaciones posible x 1 sola posibilidad en la 2ª parte del palíndromo = 42 x 1 = 42

2.b.- Caso 2 ( P (1)- NP(2) –P´(1))

Para el palíndromo interrumpido de 4 bases sólo cabe la posibilidad dibujada abajo. Su cálculo sería: 41 para constituir palíndromo (P y P´), multiplicado por aquellas secuencias posibles NP de 2 bases; éstas últimas serían 42 posibles de 2 unidadades  – 41 que las harían palíndromo continuo al añadir una unidad más al palíndromo (y estamos contemplando el caso  que no constituyan palíndromo). Por tanto, en total:  41 (42 – 41 ) = 43 – 42

2.c.-

La Suma total de secuencias de 4 bases que formarían un palíndromo (continuo o interrumpido) = 42 + (43 – 42) = 42 + 43 – 42 = 43

 

3.- Palíndromos interrumpidos de 5 unidades

2 casos posibles de palíndromo (ambos interrumpidos). No existe, en este caso la posibilidad de palíndromos continuos,  al ser una secuencia Impar.

3.a.- Caso 1:  (P (2)- NP(1)- P´(2))

En este primer caso se calcularía 42 (nº de P ) x 41 (posibilidades de NP: los 4 nucleótidos) = 43 posibilidades de secuencias diferentes

3.b.- Caso 2; (P (1)- NP(3)-P´(1))

En esta segunda posibilidad: 41 secuencia P x aquellas secuencias NP de 3 unidades que se calcularía 43 secuencias posibles, menos aquellas que las convirtiesen en palíndromo (que serían las indicadas para en apartado 1, o sea 42); por tanto, 41 ( 43 – 42) = 44 -43

3.c.- Si sumamos ambos casos 43 + (44 – 43) = 44 posibilidades de secuencias palíndromo diferentes

4.- Palíndromos de 6 unidades

Casos posibles:

4.a.- Caso 1:  (P(3)- NP(0)- P´(3)) – Palíndromo continuo

Palíndromo continuo donde los 3 primeros nucleótidos (43 combinaciones posibles) determinan una  y sólo una posibilidad en los 3 últimos: 43 X 1 = 43

4.b.- Caso 2:  (P(1)-NP(4)-P´(1))

Palíndromo interrumpido de 1 base en cada extremo

si le añaden una : 41 ( P y P´) x aquellas de 4 nucleótidos no palíndromos (44 – 43: las combinaciones posibles (44) menos las calculadas en el apartado 2c, que sería el nº de secuencias palíndromo posibles de 4 nucleótidos o pares de nucleótidos ): 41 (44 – 43) = 45 – 44

4.c.- Caso 3:  (P(2)-NP(2)-P´(2))

Palíndromo interrumpido de 2 bases en cada extremo:

Secuencias P= 42 multiplicado por aquellas combinaciones de 2 NP: (42 – 41: las posibles menos las indicadas en el razonamiento del  apartado 2b). Por tanto 42(42 – 41)= 44 – 43

4.d.-

La suma de todas las combinaciones palíndrómicas posibles sería: 43 (continuo) + (45– 44) añade 1, + (44 – 43) añade 2 = 43 + 45 – 44 + 44– 43= 45 secuencias palíndromos posibles

 

5.- Palíndromos interrumpidos  de 7 unidades

5.a.-Caso 1:  (P(1)-NP(5)-P´(1))

palíndromo interrumpido de 2 bases (uno en cada extremo) y 5 NP. Multiplicar el nº de unas por el nº de las otras

-Secuencias que forman el palíndromo: 41

-Secuencias NP (de 5 bases): 45 posibles menos aquellas que hicieran de esas 5 bases algún palíndromo; que como hemos calculado en el apartado (3) son 44.

Por tanto= 45– 44

-Total: 41 (45 – 44) = 46 – 45

5.b.-Caso 2:  (P(2)-NP(3)-P´(2))

palíndromo interrumpido que añade 4 bases (2 en cada extremo) y 3NP. Multiplicar el nº de unas por el nº de las otras.

-Secuencias posibles palíndromos: 42

-Secuencias NP( de 3 bases): las posibles 43 – aquellas que la convertirían a la secuencia NP en palíndromo, que como hemos calculado en el apartado (1) son 42. En total 43 – 42

-Total secuencias: 42 (43 – 42)= 45 – 44

5.c.- Caso 3:  (P(3)-NP(1)-P´(3))

Palíndromo interrumpido que añade 6 bases (3 en cada extremo) y 1 NP

Secuencias posibles que formarían el palíndromo;  43, multiplicadas por los posibles NP (los 4 nucleótidos) que en este caso es 41

Por tanto 43x 41 = 44 posibilidades de secuencias

5.d.-

Si sumamos los 3 casos: 46 – 45 + 45 – 44 + 44 = 46

 

6.- Palíndromos de 10 unidades

Pasamos ahora al caso en que la secuencia tenga 10 Pares de bases ( o nucleótidos)

6.a.-Caso 1:  (P(5)-NP(0)- P´(5))- Palíndromo continuo

Palíndromo continuo (5 y 5). Los 5 primeros nucleótidos (45) determinan una y sólo una combinación en los 5 restantes: 45 x 1 =45

6b.- Caso 2:  (P(1)- NP(8)-P´(1)

Palíndromo interrumpido de 1 base en cada extremo y 8 NP: Siguiendo los razonamientos anteriores: 41 x (48– 47)= 49 – 48

6.c.- Caso 3:  (P(2)-NP(6)-P´(2))

Palindromo interrumpido de 2 en cada extremo y 6 NP: 42 (46– 45)= 47– 46

6.d.- Caso 4:  (P(3)-NP(4)-P´(3))

Palíndromo interrumpido de 3 en cada extremo y 4 NP en medio: 43 (44– 43) = 47 – 46

6e.- Caso 5:  (P(4)-NP(2)-P´(4))

Palíndromos interrumpidos de 4 en cada extremo y 2 NP en medio: 44 (42– 41)=46 – 45

6.f.-La suma total de posibles secuencias palíndromo de 10:  45 +49-47 + 47-46 + 46-45 = 49

7.- Respuesta a la pregunta inicial

Podemos ahora responder a la pregunta con la que iniciábamos los cálculos de este apartado. El nº de secuencias posibles de un palíndromo (P6-NP(5)-P´(6))  es igual a  46 (45 -44) = 411 -410 = 410( 4 -1) = 3 x 410 = 3.145.728 ( Ver punto 5 de las conclusiones más abajo y todos los casos contemplados de palíndromos interrumpidos en los apartados anteriores 1a, 2b, 3a, 3b, 4b, 4c, 5a, 5b, 5c, 6b, 6c, 6d, 6e))

Tabla resumen de los cálculos realizados anteriormente

CONCLUSIONES

1.- En una secuencia de “n” nucleótidos o pares de nucleótidos, el nº de secuencias posibles es 4n y 4n-1 de ellas serán secuencias palíndromo (continuos e interrumpidos)

2.- La relación entre secuencias palíndromo y secuencias no palindrómicas de cualquier tamaño (n nucleótidos o pares de nucleótidos) viene dado por la fracción 4n-1/4n = 1/4. Una de cada cuatro secuencias al azar constituirán un palíndromo continuo o interrumpido.

3.- En las secuencias de nº par (n= nº par), el nº de secuencias palíndromos continuos será 4 n/2,  y el nº de secuencias palíndromo interrumpido será 4n-1 – 4n/2. (Véase en la tabla casos 2, 4 y 6 el cálculo del nº de palíndromos interrumpidos).

4.- En las secuencias de nº impar(n= nº impar), no es posible la existencia de palíndromos continuos y el nº de secuencias de palíndromos interrumpidos será 4n-1.

5.- En cualquier secuencia que constituya un palíndromo interrumpido de estructura general: P(n)- NP (m) –P´(n) el nº de secuencias posibles diferentes será el que viene dado por la fórmula: 4n (4m -4m-1) ; 4n para el palíndromo que forman P y P´; que habrá que multiplicar por las secuencias de “m” posibles que NO puedan formar palíndromos que serán todas las posibles (4m) menos aquellas que sí lo forman (4m-1), tal y como hemos visto en los cálculos realizados. Si queremos simplificar más esta fórmula, 4n (4m -4m-1)  = 4(n+m) – 4(n+m-1) = 4 (n+m-1) (4 -1) = 3 . 4 (n+m-1)  

6.- Estas conclusiones se pueden aplicar a cualquier tipo de secuencias simples, tanto ADN como ARN .

 

 

 

 

 

 

 

 

 

 

 

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *