Noticias

21
junio

ADN TARTAMUDO (I)

En el conjunto del ADN (genoma) existen secuencias que se repiten.  El tamaño de dichas secuencias en ocasiones es muy largo (Kb) ;  en otras, sólo centenares de pares de bases y también las hay de unos pocos pares de bases. El número de veces que se repiten también es muy variable. Algunas lo hacen miles de veces. Esas secuencias repetidas pueden estar dispersas en diferentes lugares del largo filamento de ADN o pueden estar situadas seguidas unas de otras. De estas secuencias repetidas seguidas – se les denomina repeticiones en tándem – a las que podemos considerar como “tartamudas”, es de lo que vamos a hablar en este post. Más concretamente de las de pequeño tamaño, y con un número de repeticiones no muy elevado,  conocidas en el argot biológico como secuencias STR (Short Tadem Repeat: repeticiones en tándem de secuencias cortas). Un ejemplo de secuencia STR indicada en una de las hebras del ADN:.. …. 5´ GCGTA GCGTA GCGTA GCGTA GCGTA GCGTA GCGTA 3´……. Secuencia de 5 pb que, en este caso se repite 7 veces seguidas.

adn tartamudo 1adn tartamudo 2adn tartamudo 3adn tartamudo 4Representación esquemática de una secuencia STR con diferente nº de repeticiones en cada caso

Todavía se desconoce el papel biológico que desempeñan este tipo de secuencias, pero tienen su utilidad,  ya que se ha comprobado que el número de repeticiones es variable entre los miembros de la población. Son como un gen con múltiples “alelos” diferentes por el nº de repeticiones, ya que según su número,  serán secuencias más cortas o más largas. Serán locus polimórficos de longitud. Y así, por su longitud es como se las detecta en los análisis.

Catalogados muchos de estos locus en el genoma humano se ha visto que para cada uno de ellos, en la población,  existe una variabilidad definida. Por ejemplo: entre 7 y 15 repeticiones o tartamudeos. Por tanto todas las personas tendremos: 7, 8, 9, 10, 11, 12, 13, 14 o 15 repeticiones; o sea, 9 variantes o alelos para ese locus.

En el ADN de la población humana existen muchos locus STR, situados en diferentes cromosomas o en lugares diferentes del mismo cromosoma, aunque cada secuencia STR específica ocupa siempre el mismo locus.  Cada individuo tiene 2 cromosomas homólogos y en sus locus homólogos STR tendrán un alelo igual o diferente en cuanto al nº de repeticiones, o sea, de igual o distinta longitud. Siguiendo con el ejemplo anterior una persona puede ser  (7, 12) o (8,14) o (9,13) ó (15,15) ó……cualesquiera de las combinaciones de 2 e 2 para los 9 alelos: total 45 posibles combinaciones o genotipos. ( n(n+1)/2 ; en este caso  9 x10/2 =45).,

Si escogemos un número suficiente  de esos locus presentes en la población humana para que la variabilidad en el conjunto de todos ellos y  situados en diferentes cromosomas para que la transmisión sea independiente, podremos identificar a cada individuo por el conjunto de variantes de locus STR. Se ha comprobado que con 13 de esos locus, en sus combinaciones de 2 en 2 para cada uno, serían suficientes para identificar a un individuo entre varios miles de millones de ellos que presentarán otras combinaciones diferentes.

Siguiendo con el ejemplo anterior: Para uno de esos locus 45 posibles combinaciones, y suponiendo que los 12 locus restantes tengan la misma variabilidad (9 alelos, que en muchos de esos 12 locus restantes es incluso mayor), y al ser independientes,  la variabilidad sería de 45x45x45x45x45x…..(hasta 13 veces) = 4513 = muchos cuatrillones de combinaciones o genotipos diferentes. Se puede decir que podríamos identificar a cada persona humana particular desde que existe la humanidad por el análisis de esos 13 genes. Sólo en las personas gemelos univitelinos serían coincidentes. Dicho de otro modo, la probabilidad de que 2 individuos , escogidos al azar, coincidieran en las 13 combinaciones sería = 0, 000.000.000.000.000.000.000.0001%; o dicho de otra forma la probabilidad de que esa combinación fuese única =99,999.999.999.999.999.999.999.999 %.

Para los cálculos anteriores hemos considerado que cada uno de los alelos de cada locus tiene exactamente la misma probabilidad de estar presente en la población que cualquiera de los restantes y, por tanto, cada una de las 45 posibilidades de cada locus tenga la misma probabilidad de presentarse.  En las poblaciones humanas reales, algunos alelos son más frecuentes que otros por lo que la probabilidad real se reduce un poco;  1 entre varios miles de millones = 99,999.999.999.999% de que cada combinación personal sea única.

Esa combinación de 13 pares de números es lo que actualmente conocemos como perfil genético o DNI genómico y como se puede comprobar, sólo analiza una pequeñísima parte del ADN. Una parte del ADN no codificante (denominado anteriormente ADN basura). Una parte del ADN que –por lo que actualmente conocemos- no influye para nada en los caracteres biológicos de cada individuo.

Y sin embargo, el ADN de cada persona se identifica por su “tartamudeo” específico. Todos somos tartamudos y  cada persona  tiene su peculiar forma de tartamudear. Y eso es lo que nos identifica genéticamente.

Posted in alelos STR, Artículos, CODIS (Combined DNA index system), DNA Didactic, locus STR (Short tandem repeat), Noticias, Para estudiantes BACH, Para estudiantes ESO, perfil genético | Leave a comment
25
abril

SORTEO Día del ADN – DNA didactic

Con motivo del Día Internacional del ADN, un año más, en DNA didactic vamos a celebrarlo.

Este año hemos decidido sortear 5 de nuestros Kits Avanzados (nivel Bachillerato) para montar nuestro modelo tridimensional de ADN de 12 pb y estudiar su estructura, características y propiedades, mediante las indicaciones de la Guía Didáctica que incluye el Kit.

Sorteo Día del ADN 2017 - DNA didactic

SISTEMA DE PARTICIPACIÓN:

Envíanos un correo electrónico a info@dnadidactic.com (poniendo en el asunto del email: “Sorteo Día del ADN“) en el que respondas a la cuestión siguiente:

¿Cuál es el número de moléculas diferentes posibles de ADN formadas por 10 pares de bases?

Para responder correctamente a la cuestión planteada deberás, además de acertar el número, justificar en tu email los cálculos que has realizado para obtener tu respuesta.

PLAZO DE PARTICIPACIÓN:

Las respuestas pueden enviarse hasta el domingo 30 de abril de 2017 (incluido).

RESOLUCIÓN DEL SORTEO:

La respuesta correcta a dicha cuestión aparecerá publicada durante la siguiente semana (del 1 al 5 de mayo) en el blog de DNA didactic.

Quienes acierten la cuestión serán notificados por email durante esa misma semana a la dirección desde la que nos envíen su respuesta. El sorteo de los 5 kits didácticos (nivel avanzado) se realizará entre dichos acertantes; posteriormente notificaremos por email el resultado definitivo a las 5 personas ganadoras del Kit en el que se les solicitará la dirección para el envío del premio.

¡Mucha suerte a todos los participantes!

Feliz día y semana del ADN  :)

Posted in Colaboraciones, DNA Didactic, Noticias, Para estudiantes BACH, Para estudiantes ESO | Tagged , , , , , | Leave a comment
25
abril

Feliz día del ADN 2017

¿Qué tal un poco de ADN?

Molécula tridimensional ADN - DNA didacticPara conmemorar este día, vamos a fijarnos simplemente en el nombre de esta famosa molécula.

ADN significa “Ácido desoxirribonucleico”. Gramaticalmente es un nombre (ácido) y un adjetivo calificativo (desoxirribonucleico).

Vayamos primero con el nombre. Ácido es un nombre referente a una clase de sustancias químicas Los ácidos son un tipo de moléculas que, en disolución, aportan a ésta  H+ (Hidrogeniones). En el caso del ADN  éstos son aportados por el radical –OH libre del fosfato de cada uno de sus nucleótidos componentes, ya que el –(O-H ) es un grupo en el que debido a la elevada electronegatividad del Oxígeno, el par de electrones que comparte en el enlace con el Hidrógeno  -que no es nada electronegativo- son atraídos hacia el oxígeno y dejan al hidrógeno casi sin ellos,  y así se desprende con facilidad del enlace quedando libres con carga positiva ( H+). Lógicamente el oxígeno, al quedarse con ellos queda con carga negativa (O-)  y permanece  unido al fosfato. Sigue quedando en el ADN que poseerá cargas negativas en todos sus grupos fosfato.

Llegados a este punto, se puede uno preguntar : pero….¿ y las BASES nitrogenadas A,T,G y C, no realizan el efecto contrario  ya que son BASES(lo contrario de ácido)?. Pues les diré que no pueden hacerlo en el ADN ya que sus grupos NH2 (radicales básicos) de su composición están “encadenados”, no están libres ya que están comprometidos en formar enlaces con el azúcar por un lado y con las bases complementarias por el otro y no pueden comportarse como tales bases y no son capaces de capturar hidrogeniones que sería el efecto negativo al ácido.

De todas formas ese compromiso de los grupos básicos de sus bases es un compromiso débil ya que  forman enlaces de “puentes de Hidrógeno” (uniones débiles) entre ellos, a través de sus radicales básicos,  aunque su gran nº a lo largo de todo el ADN hace de éste una molécula estable. No obstante, al ser débiles,  basta un cambio  en algún agente genérico (calor, cambio de pH del medio, agente químico desestabilizante,..) para que estos enlaces se rompan y se separen ambas hebras de la doble hélice.  A esto se llama “desnaturalización” del ADN. Fácil de conseguir y, además,  muy deseable ya que el ADN tiene que desnaturalizarse total o parcialmente para realizar sus trabajos. Así la célula ahorra energía al expresar y  volver a guardar su  conformación de doble hebra en su ADN. La renaturalización del ADN consiste en el fenómeno contrario y se consigue igual de fácil que el proceso de desnaturalización, revertiendo las condiciones.

Por lo tanto en condiciones normales –fisiológicas-  el ADN es químicamente un Ácido.

ADN polianiónico

El ADN en condiciones fisiológicas tiene cargas negativas a lo largo de sus dos hebras = polianiónico.

Por esta razón, además,  el ADN queda cargado negativamente en la zona de sus fosfatos que ocupan la parte exterior de la doble hélice y a todo lo largo. Esto posibilita varias propiedades. Por una parte la posibilidad de utilizar la electroforesis (responder a un campo eléctrico) y ser atraídos por el polo positivo hacia el que emigran las diferentes moléculas de ADN en mayor o menor distancia en función de su masa total . Es decir obtener separadamente diferentes fragmentos de ADN. Esta es una de las  técnicas fundamentales para la manipulación del ADN en el laboratorio.

Por otro lado facilita la interacción con moléculas con carga positiva. En concreto y en el lugar   donde se encuentra con las histonas (proteínas con carga positiva)  a las que se une para empaquetarse y desempaquetarse con relativa facilidad a la hora de la reproducción celular o a la de expresar o no sus genes.

El adjetivo desoxirribonucleicoen el calificativo específico formado por la unión de 2 palabras: la primera de ellas (desoxirribo)  hace referencia a uno de los componentes : la desoxirribosa, azúcar (monosacárido) de 5 átomos de carbono que ocupa la parte central de cada nucleótido , que se une al fosfato por un lado y a la base nitrogenada por el otro; la segunda (nucleico)  nos indica su localización: el núcleo celular.

La desoxirribosa es la ribosa desoxigenada (se le ha quitado oxigeno). En este caso concreto es la ribosa 2-desoxi (en su carbono 2 falta un oxígeno). Esta propiedad hace que la desoxirribosa carezca de grupos OH libres. Todos están comprometidos: el OH del carbono 1  con la base de  cada nucleótido, el del carbono 5 con los fosfato propio del nucleótido y el 3 con el fosfato del nucleótido adyacente y el del carbono 4  comprometido con la formación del anillo pentagonal. Así la desoxirribosa al carecer de grupos OH,  queda “ inerte” ya que no puede establecer acción química ninguna y carece de reactividad lo que es importante para dar estabilidad a la molécula de ADN.  En el ARN, la ribosa  del carbono 2 tiene el OH activo y es reactivo por lo que esta molécula es menos estable que el ADN.

Aunque las palabras que describen al ADN sintetizan su esencia y de ella se derivan ciertas propiedades como las que hemos descrito, esta molécula tiene muchas otras propiedades tanto químicas como físicas, que la hacen perfecta para el desempeño de su función esencial que no es otra que llevar en sí misma la información de los genes que hace a todos y a cada uno de los seres vivos ser como son.

Terminamos  con una frase original inglesa que lo resume: “DNA is LIFE, the rest  is  just  translation” (El ADN es la VIDA; el resto, simplemente, su interpretación)

GLOSARIO

Electronegatividad: Se dice de los átomos con  tendencia para atraer cargas negativas y se valora por la fuerza utilizada para realizarla.

Ribosa y desoxirribosa. Monosacáridos (azúcares sencillos) de 5 átomos de Carbono.

Histonas. Proteínas con carga positiva asociadas al ADN formando la fibra de cromatina y otras estructuras más compactas.

Nucleótido : Unidad molecular química formada por 3 componentes más básicos:  Fosfato (ácido fosfórico) unido a la desoxirribosa, que a su vez está unida a la base Nitrogenada (A ó T ó G ó C).

ADN: 2 filas de nucleótidos unidas transversalmente entre sí por los nucleótidos de bases complementarias (A y T; y G y C ) y con geometría de doble espiral.

Posted in Artículos, Noticias, Para estudiantes BACH | Tagged , , | Leave a comment
3
abril

Indicios vs. certezas en los análisis de ADN para casos de paternidad

La prensa de estos días relata una demanda de paternidad al difunto marido de la Duquesa de Medina Sidonia, también conocida con el sobrenombre de “Duquesa Roja”.

Leoncio González de Gregorio y Martí y la duquesa medina sidonia

La demanda ha sido interpuesta por una “supuesta hija” de D. Leoncio Glez. de Gregorio y Martí que habría sido concebida por su presunta relación con una doncella de la Finca en que residía.  Después de tres años de pleitos la parte demandante ha conseguido la exhumación del cadáver de su presunto padre.

¿Por qué se ha solicitado la exhumación y no se ha comparado  los ADN de los hijos legales con el de  la demandante – supuesta hija y hermanastra de los anteriores- a pesar de que –como afirma la noticia- los hijos legales se prestaron a hacerlo?

La respuesta es que la comparación de los análisis de ADN entre 2 o más personas  que son hermanos o hermanastros sólo puede presentar indicios de su parentesco; nunca certezas (salvo que fuesen hermanos gemelos monovitelinos).  Indicios que en términos de probabilidad ,  por término medio,  sería del 50%. Es decir, una probabilidad insuficiente para afirmarlo con certeza ya que también  podría producirse  al compararlos con un cierto pocentaje de cualesquiera otras personas escogidas al azar entre la población. Por tanto no es una prueba que proporcione certeza.

La justicia debe basarse en criterios científicos ciertos, o al menos con una certeza próxima al 100%. Circunstancia que no se produciría en ningún caso al comparar el ADN de las personas vivas implicadas, supuestos hermanastros. Y esta certeza sólo se cumple si comparamos el análisis de ADN entre un padre (o madre) y su hijo (o hija).

El análisis de ADN se basa en la determinación de 15 locus (genes) que son muy polimórficos  en los seres humanos e independientes (se transmiten independientemente unos de otros).  Es decir, que cada uno de esos genes presenta muchas variantes (entre 8 y 24 variantes) y en cada una de ellos las variantes se transmiten aleatoriamente. Cada persona presenta una combinación de 2 variantes para cada gen (una variante recibida del padre y la otra de la madre). Si una de  las variantes presentes en un presunto hijo o hija  está también presente en el padre (o madre) en todos y cada uno de los 15 genes, se puede afirmar con un grado de certeza cercano al 100% que efectivamente es su hijo/a.

Pongamos un ejemplo:

Imaginemos una quiniela de números.

En la casilla 1 caben 8 posibilidades y sólo puede marcarse una de las 8; en la casilla 2, 14 posibilidades y sólo puede marcarse una de las 14; en la casilla 3, 24 posibilidades y sólo se marca una;…. y así hasta 15 casillas con diferentes números de posibilidades y de cada una se marca sólo una.  Resulta que acertamos a marcar las posibilidades concretas  correspondientes a las 15 casillas: PREMIO; ¡¡ Paternidad confirmada!! .

Si lo queremos con números

-acierto en la casilla 1= 1/8

-acierto en la casilla 2 =1/14             Posibilidad de acierto 1 y 2 = 1/8 x 1/14 = 1/112

-acierto en la casilla 3= 1/24            Posibilidad acierto 1,2 y 3= 1/112 x 1/24 = 1/2688

…………………………………………

…………………………………………

etc. …………………………………..

-Acierto en las 15 casillas = 1/ 71.000.000.000.000.000. Uno entre setenta mil billones  (setenta mil millones de millones); es decir, uno entre  1 millon de  veces el nº de habitantes actuales de la tierra (*)

(*) Los cálculos se han realizado suponiendo que la frecuencia poblacional de cada uno de los alelos o variantes de cada gen sea la misma. Para realizar los cálculos con toda exactitud se utilizan las frecuencias alélicas (de cada uno de los polimorfismos concretos) reales en la población. A pesar de ello, el resultado final no difiere significativamente con los resultados obtenidos.

Sin embargo, cuando se trata de comparar el ADN con el de supuestos hermanos sucede lo siguiente. Los hermanos o hermanastros reciben para cada gen, aleatoriamente, uno de los 2 polimorfismos concretos que el padre posee. Así pues la probabilidad de que 2 hermanos o hermanastros posean la misma variante en ese gen (de los 2 que tienen; el otro lo recibirían de la madre) es de ½: la misma de que al lanzar una moneda 2 veces se obtengan 2 caras o 2 cruces (para coincidir en los 2 hermanos). Como se analizan 15 de estos genes, por azar, lo lógico es que –por probabilidad media- coincidan en 7-8 de los 15 (50%); pero no tiene por qué ser siempre así en cada caso concreto y podría darse el caso de que no coincidieran en ninguno (caso muy poco probable, ya que les ha tocado la otra variante del padre en los 15 genes) y el caso opuesto que hubiera una coincidencia en todos (Caso igualmente muy improbable: les ha tocado la misma variante del padre en los 15 genes) y todos los casos intermedios: 1 de15; 2 de 15; 3 de 15; 4 de 15; ………..hasta 14 de 15. La frecuencia estadística de estas coincidencias iría en aumento hasta los 7-8 de 15 y disminuiría igualmente hasta la coincidencia total, según una distribución binomial.

Por tanto en “un caso concreto” como la comparación de 2 hermanos o hermanastros podrían darse cualesquiera de las coincidencias: coincidir, por ejemplo en 2 de los 15 o en 7 de los 15; o cualquier otra cantidad de coincidencias. Por tanto dicha prueba no tiene un valor de certeza y todo lo más que pudiésemos decir es que, según el resultado, hay “indicios” de que ambos pudieran ser hermanos.

En otro post anterior comentamos otro caso de demanda de paternidad, que parece ser que se están poniendo de moda.

 

Posted in Artículos, Noticias, Para estudiantes BACH | Tagged , , , | Leave a comment
20
enero

Productos médicos fabricados por OMGs

Proteínas obtenidas a partir de organismos transgénicos utilizados en Medicina

(Datos obtenidos en http://www.chilebio.cl/)

PRODUCTO SISTEMA DE PRODUCCIÓN ENFERMEDAD
1.-FACTORES DE COAGULACIÓN
Factor VIII Células de mamífero Hemofilia A
Factor IX Células de mamífero Hemofilia B
Factor VIIa Células de mamífero Ciertas formas de hemofilia
 2.-ANTICOAGULANTES
Activador del plasminógeno tisular Células de mamífero Infarto de miocardio
Activador del plasminógeno tisular Bacterias Infarto de miocardio
Hirudina Levaduras Trombocitopenia y prevención de trombosis
 3.-HORMONAS
Insulina Bacterias / Levaduras Diabetes mellitus
Hormona de crecimiento Bacterias Deficiencia de la hormona en niños, acromegalia, síndrome de Turner
Folículo-estimulante Células de mamífero Infertilidad, anovulación y superovulación
Paratiróidea Bacterias Osteoporosis
Gonadotrofina coriónica Células de mamífero Reproducción asistida
Tirotrofina Células de mamífero Detección /tratamiento de cáncer de tiroides
Luteinizante Células de mamífero Ciertas formas de infertilidad
Calcitonina Bacterias Enfermedad de Paget
Glucagon Levaduras Hipoglucemia
  4.-FACTORES HEMATOPOYÉTICOS
Eritropoyetina (EPO) Células de mamífero Anemia
Factor estimulante de colonias de granulocitos/macrófagos (GM-CSF) Bacterias Netropenia, transplante autólogo de médula
 5.- INTERFERÓN E INTERLEUQUINAS
Interferón alfa (IFN alfa) Bacterias Hepatitis B y C, distintos tipos de cáncer
Interferón beta (IFN beta) Células de mamífero Esclerosis múltiple
Interferón gamma (IFN gamma 1b) Bacterias Enfermedad granulomatosa crónica
Interleuquina 2 (IL-2) Bacterias Cáncer de riñón
6.-VACUNAS
Anti-hepatitis B Levaduras Inmunización contra la hepatitis B
Anti-hepatitis A Levaduras Inmunización contra la hepatitis A
Anti-enfermedad de Lyme Bacterias Inmunización contra la enfermedad de Lyme
 7.-ANTICUERPOS MONOCLONALES RECOMBINANTES
Anti-IgE (recombinante) Células de mamífero Asma
Anti-TNF (recombinante) Células de mamífero Arthritis reumatoidea
Anti-IL2 Células de mamífero Prevención rechazo agudo transplante de riñón
 8.-OTROS PRODUCTOS RECOMBINANTES
Proteína morfogénica del hueso-2 Células de mamífero Fractura de tibia
Galactosidasa Células de mamífero Enfermedad de Fabry
Iaronidasa Células de mamífero Mucopolisacaridosis
Proteína C Células de mamífero Sepsis severa
Beta-glucocerebrosidasa Bacterias Enfermedad de Gaucher
DNAsa Células de mamífero

 

Posted in DNA curioseando, Noticias | Tagged , , , , , | Leave a comment
24
noviembre

El ADN es cosa de bits

Un genoma humano tiene 3.200.000.000 pares de bases. Tener en cuenta una secuencia de tal calibre, además de sólo 4 “letras” diferentes, se insinúa imposible. Aunque sólo fuese por esta circunstancia, el apoyo informático se convierte en absolutamente necesario.

La informática se convierte así en un aliado necesario de la biología principalmente a nivel molecular.

¿Cómo descubrir, en ese listado inmenso, la secuencia concreta que andamos buscando? ¿Cómo diferenciar secuencias “equivalentes” en el ADN de diferentes personas, o de diferentes organismos?

Las bases de datos de secuenciación de genes y genomas cada vez son más amplias (también para obtenerlas es necesaria la informática). Cada día aparecen noticias sobre la secuenciación del genoma de nuevos organismos. El problema de la biología actual del ADN es la enorme cantidad de datos que poseemos y su fuerte ritmo de crecimiento que debe obligar a la creación de programas informáticos eficientes y rápidos para ordenarlos, describirlos y compararlos.

Además de analizar secuencias, la informática puede servir de gran ayuda para descubrir la “calidad” de las mismas (su acción) por la interrelación funcional, que sabemos que se produce entre diferentes secuencias localizadas en diferentes parte del genoma. Me atrevo a predecir que un futuro premio Nobel será consecuencia del descubrimiento realizado por alguna herramienta informática.

La biología ya no sólo es cosa de bota y de bata: se necesitan bits

La biología ya no sólo es cosa de bota y de bata: se necesitan bits

La informática ayuda, además, en la conformación 3D. La naturaleza bioquímica de la vida y de sus disfunciones está determinada por las interacciones en 3D que se producen entre diferentes componentes bioquímicos. Sobre todo ADN y proteínas. La informática puede realizar y variar de una forma gráfica y rápida las diferentes conformaciones que pueden adoptar ciertas moléculas para comprobar las posibilidades de sus interrelaciones tridimensionales.

Todo ello requiere el desarrollo de herramientas, algoritmos y software adecuado para conseguir de forma rápida y precisa todos los resultados de las investigaciones en este campo.

La Informática así aplicada recibe el nombre de Bioinformática y constituye un poderoso instrumento imprescindible, hoy día, en la investigación biológica.

Posted in Artículos, Noticias | Tagged , , , | Leave a comment
17
noviembre

Una misma persona, dos genomas distintos

No siempre ocurre así: un genoma haploide de papá y otro genoma haploide de mamá. Uno y uno. A veces hay más de dos. Son raros los casos, pero sí.

Puede suceder que en las primeras fases del desarrollo del embrión en humanos, éste no se encontrara sólo en el aparato sexual materno, sino acompañado de un hermano con el que se me mezcló, formando una sola unidad. Las parte fusionadas se adaptaron, se sincronizaron en un desarrollo unitario y las células, tejidos y órganos o partes de ellos a los que dieron lugar se encontraran en el individuo nacido y más tarde, en el adulto. Éste nuevo embrión, que surge de la mezcla, presentaría células con un genoma, y células con el genoma de su hermano o hermana.

Los individuos que presentan tales características reciben el nombre de quimeras. Un individuo quimera tiene, por tanto 2 genomas diploides.

En el embrión quimera, hay células que tienen un genoma,  y otras otro genoma,  resultado de la mezcla de dos embriones.

En el embrión quimera hay células que tienen un genoma y otras que poseen otro genoma. Es el resultado de la mezcla de dos embriones diferentes.

¿Es posible que fusionen más de un hermano? La literatura científica dice que sí sería posible; y, en ese caso, sus células tendrían 3 genomas, es decir, habría células de 3 tipos con un genoma distinto cada una. ¿Y también 4, 5…? Hasta ahora sólo se han encontrado y descrito casos de doble genoma.

La causa del origen de los individuos quimera es todavía incierta. En el libro El embrión ficticio, de Gonzalo Herranz, explica dos clases diferentes de teorías sobre cómo se producen estos casos. Lo que sí está claro que su inicio se debe a una fecundación doble: dos óvulos distintos y dos espermatozoides distintos. La diferencia entre una clase y otra se produce por el momento de la fusión de ambos embriones.

La teoría “tradicional”, es aquella que tiene una mayor tradición histórica, y afirma que se producen dos fecundaciones en óvulos distintos individualizados. Se produce una doble ovulación materna, donde cada óvulo independiente está envuelto en su correspondiente zona pelúcida; posteriormente, en algún momento anterior a la plena implantación (desde los primeros días hasta el día 14), los embriones se fusionan en uno solo, desarrollándose luego un solo individuo con células de ambos tipos entremezcladas.  Existen muchos matices acerca de los mecanismos que permiten o impiden tal fusión y, para intentar aclarar por qué fallan o se activan algunos de esos mecanismos, algunos científicos hipotetizan que debe producirse en un margen temporal diferente al que afirman otros. No obstante, hasta la fecha, nadie ha contemplado el fenómeno de fusión de embriones incipientes, ni siquiera desde que se instauró la fecundación in vitro.

El segundo tipo de teoría, más reciente en el tiempo, no habla de fusión de embriones sino de dos óvulos diferentes envueltos en la misma zona pelúcida (se trataría en este caso de una ovulación especial).  Ambos son fecundados por su correspondiente espermatozoide, uno para cada óvulo.  Como ambos forman parte de la misma unidad, irían dividiéndose ambos tipos de células como lo harían las de un cigoto normal, como un único embrión.

Tanto en un caso como en otro los genotipos del individuo quimera serían 46,XX/46,XX; 46,XY/46,XY o 46,XX/46Y. En los dos primeros genotipos que contienen cromosomas isosexuales, todas las células del individuo serían femeninas o masculinas respectivamente. Son mujeres o varones de fenotipo normal, como uno más, hasta que se enteran de su condición por un análisis sanguíneo o un genotipado de HLA (compatibilidad). En definitiva, por un análisis genético.

Las quimeras anisosexuales acostumbran a presentar manifestaciones en mayor o menor grado de trastorno ovotesticular (tipo de hermafroditismo): órganos genitales externos ambiguos y alteraciones gonadales (1 testículo y 1 ovario; tejido ovárico y testicular reunidos en un ovotestis).

Otro fenómeno diferente, más frecuente -diría que universal-  son los individuos mosaico, en los que el genoma de todas sus células no son exactamente iguales porque sus células han sufrido mutaciones previas, debido a que la ADN polimerasa no es perfecta, y siempre hay algún error en la copia del ADN, produciendo células hijas en las que algunos nucleótidos cambian.

Cada célula de difrentes de su color. Está claro que incluso en nuestro propio cuerpo hay diversidad y covivencia

Cada célula de su color. Está claro que incluso en nuestro propio cuerpo, dentro de un sólo organismo, hay diversidad

Todos somos individuos mosaico en mayor o menor grado, o también podríamos decir que todos somos mutantes ambulantes.  ¿Qué te parece ser un  X-men?

Posted in Artículos, Noticias | Tagged , , , , | Leave a comment
10
noviembre

La red de la genética

Con la cascada de noticias sobre las investigaciones científicas relativas al genoma y al epigenoma, uno se puede imaginar que el genoma de los organismos, humano incluido, funciona en la mayor parte de los casos como un sistema en forma de red, mediante el cual el momento, lugar e intensidad en ciertas expresiones génicas concretas viene condicionada por la activación/supresión de otros genes, así como de la presencia de ciertos factores, normalmente químicos, del entorno genómico.

No hace falta que exista una mutación para provocar la deficiencia en la expresión del gen o su sobreexpresión. Es posible que algo falle en la red genómica para que esa circunstancia se dé, de ahí que sea tan complicado desentrañar las causas de muchas enfermedades con causa genética, así como la existencia de las diferencias genéticas entre enfermos con el mismo tipo de dolencia.

cruce-de-vias_senalesComo una imagen –dicen- que vale más que mil palabras, puede contemplarse el funcionamiento genómico como el de una red de carreteras y caminos en que el trayecto entre lugares se conecta por la expresión de determinados genes; bien porque éstos sólo son transcritos, que se corresponderían con  caminos de una sola vía (de un solo sentido) con otros –quizás más importantes- con genes que se expresan en proteínas que se corresponderían con aquellas carreteras de doble vía. La interrupción de un camino o de una de las vías por obras, accidentes, inundaciones, u otro tipo de cortes en alguna de ellas impediría que la red no funcionara, lo hiciera deficientemente o nos llevara a otro lugar distinto del que debiera.

En la mayoría de enfermedades, en las denominadas multifactoriales, es muy posible que suceda algo análogo a lo expresado anteriormente y que no podamos hablar de enfermedad desde un punto de vista común sino de enfermedades particulares. Dando entrada así a la denominada medicina personalizada.

Si bien existen algunos factores comunes, estadísticamente hablando, entre quienes padecen una determinada deficiencia por causas genéticas, está también establecido que un porcentaje no desdeñable de dichos enfermos carecen de los factores presumiblemente responsables que los otros tienen en común, existiendo además una gran variabilidad de las posibles causas genéticas entre ellos.

Está claro que el funcionamiento del genoma es tremendamente complejo y que son necesarios muchísimos más estudios para desentrañar poco a poco lo que no hace tiempo considerábamos -una vez completado el proyecto sobre el genoma humano- como la solución definitiva:  la piedra filosofal de la medicina.

Posted in Artículos, Noticias | Tagged , , | Leave a comment
4
noviembre

La ciencia de lo (e)nano

La nanotecnología es uno de los campos punteros de la ciencia en la actualidad. Dicen que va a producir una revolución con las supuestas casi infinitas aplicaciones que le atribuyen.

La nanotecnología podemos definirla como la tecnología de lo “nano”. Nano se refiere al nanómetro (10-9 m), a la mil millonésima parte del metro o a la millonésima parte del milímetro. Por otro lado, tecnología sabemos todos lo que es. Entonces nanotecnología es la capacidad para observar, producir, construir y manipular objetos pequeñísimos. Hablaríamos entonces, por poner un ejemplo, de nanochips de memoria capaces de contener la información de los volúmenes  la biblioteca nacional en un punto imperceptible.

Cartel de la elícula Viaje Alucinante y escena de Los Simpons parodiando la película (hasta en esa serie se ha tratado el tema de Nanotecnología... su importancia debe tener)

Cartel de la película Viaje alucinante y escena de Los Simpons parodiando la película. La nanotecnología en ambos casos fue usada para solucinar un problema médico introduciendo una nave nano (y tripulación) en el cuerpo del paciente

El ADN también es un objeto natural nano, su grosor es de 2 nanómetros. Una secuencia de 10 pares de bases tiene una longitud de 3,4 nanómetros.

Hasta el momento, manipulamos el ADN de forma físico-bioquímica y normalmente utilizamos ADN en grandes cantidades, aunque sean picomoles. El acceso a una sola molécula de ADN de forma directa nos está hoy técnicamente vedado si no hacemos millones de réplicas de la misma a través de la técnica de la PCR. No tenemos acceso al ADN de una o varias células entremetidas en la inmensidad de células que forman los tejidos u órganos corporales in vivo. En la actualidad tenemos que manipular el ADN de células especializadas o bien embrionarias o madre adulta siempre fuera del contexto natural (in vitro).

Con la nanotecnología se acabarían estos problemas y, en teoría, podríamos modificar el ADN celular allí donde fuese necesario (in situ e in vivo) introducir una reparación a través de algún artilugio nano.

Es algo parecido a lo que sucedía en la película de ciencia ficción Viaje alucinante (basada en la novela del mismo título de Isaac Asimov). En ella, un submarino es reducido de tamaño con un rayo reductor, con tripulantes incluidos, e introducido a través de una jeringuilla en el torrente circulatorio de un paciente para que, a través de él, acceder y reparar una lesión cerebral del mismo; un submarino nanotecnológico.

Hoy día no necesitamos un rayo reductor. Los avances nanotecnológicos nos permitirán construir el nano-submarino con piezas nano porque ya hemos empezado a manejar y manipular  átomos sueltos.  Sino, vean quién ha ganado el premio Nobel de Química del 2016, tres científicos que se ha sumergido en el mundo de lo nano y ya han hecho sus pinitos creando máquinas moleculares.

nobel_price_2016Si echamos la imaginación a volar y tiramos también de lógica, una nanomáquina (en nuestro caso, un hipotético nanosubmarino reparador de mutaciones de ADN) debe tener tres características indispensables para que sea factible:

  • Una “coraza” para que a su paso por los diferentes “tubos” por los que sería introducido en el cuerpo, no fuese dañado y hundido antes de llegar a su objetivo.
  • Un “localizador del objetivo”, es decir, una señal para reconocerlo y poder excluir lo que no es el objetivo.
  • Un “torpedo” lo suficientemente potente para introducirlo en el objetivo (el núcleo de unas células específicas de un órgano, por ejemplo).

En los enlaces indicados a continuación podemos apreciar diferentes aplicaciones de la utilización de nanopartículas en biomedicina, pero con imaginación ya veis que se puede recrear la inmensa cantidad de aplicaciones que la nanotecnología puede proporcionarnos.

http://www.agenciasinc.es/Noticias/Nanoparticulas-para-combatir-enfermedades-infecciosas

http://www.elmundo.es/ciencia/2013/11/29/52989d2961fd3d67558b4579.html

http://www.elmundo.es/salud/2013/12/11/52a8c02461fd3d7f2a8b4578.html?a=e1017c79219ff622f70c967f089b38f1&t=1386841940

http://www.solociencia.com/2014/02/03/obtienen-nanocapsulas-con-actividad-antitumoral-en-lineas-celulares-de-cancer-de-mama/

Posted in Artículos, Noticias | Tagged , , , | Leave a comment
27
octubre

Mundo ARN y el origen de la vida

Se dice que el ADN es la base de la vida, pero… ¿hasta qué punto? En eucariotas y procariotas, el ARN es una molécula intermediaria entre el ADN y las proteínas. Para la síntesis de proteínas hacen falta proteínas y ARN (de transferencia, ARNt y ribosomal, ARNr) que viene codificado en el ADN, que necesita a su vez proteínas para dar el ARN mensajero que servirá para traducir la información a proteínas. Vamos, que hay una relación inevitable de cooperatividad entre tres moléculas esenciales: el ADN, el ARN y las proteínas.

dibujo20121024-the-emergence-of-hypercyclesPero quien fue primero, ¿el huevo o la gallina? (el huevo, que las gallinas evolutivamente vienen de los réptiles y éstos ya ponían huevos). Pues a esta pegunta se dedican los científicos y ya tienen varias hipótesis. Una cosa que parece que tiene consenso es que el ADN es un producto secundario del ARN (que se pudo haber formado como un mecanismo de resistencia para tiempos de guerra donde las condiciones ambientales eran más duras y se necesitaba estabilidad). También se cree que la formación de proteínas y ARN fue químicamente espontánea y contemporánea en ese caldo primigenio que fue la hidrosfera de la Tierra antes de que la primera célula, llamada LUCA (Last Universal Common Ancestor), apareciese.

Entonces, lo fundamental de LUCA está en las proteínas y el ARN…

¿Cómo pudo surgir la vida en células tal como la entendemos hoy en día de un puñado de moléculas de proteínas y ARN de una sopa primigenia? Hay varias hipótesis al respecto, una dice que primero tuvo que surgir el metabolismo y otra que primero fue el ARN. Ambas cojean, ya que no explican todo lo necesario para saber cómo ha surgido LUCA.

Con respecto a la hipótesis de un mundo de ARN, ésta se centra en el ARN ribosómico. Se cree que el pre-ribosoma, el ribosoma ancestral formado por proteínas y ARN, tenía la capacidad de autorreplicarse aunque no codificaría información genética… Pero, ¿y si sí la codificase y no sólo se autorreplicase, sino que también pudiese sintetizar sus propias proteínas catalíticas y su propia estructura? De esta forma el pre-ribosoma sería el  intermediario entre la vida prebiótica y la vida celular. Con el paso del tiempo, este ARN ribosómico se especializaría sólo en la traducción perdiendo el resto de capacidades.

Para aportar un granito de arena a esta hipótesis, se he hecho un análisis de las secuencias de ADN que se corresponden con el ARN ribosómico de una cepa de E.coli mediante algoritmos de alineamiento (Root-Bernstein, M. y Root-Bernstein, R., 2015), y se ha visto que:

  • El ARNr 23S y 16S contiene todos los ARNt necesarios para la síntesis de los 20 aminoácidos proteicos (aunque éstos se solapan) y para que estos se plieguen correctamente y sean funcionales. El problema de solapamiento no sería un problema pues podría editarse el ARN y así cortarse los fragmentos correctos.
  • El ARNr 23S, 16S y 5S contiene información para crear las proteínas de su estructura y otras relacionadas con sus funciones.

O sea, que los pre-ribosomas pude que tuviesen la capacidad de codificar genéticamente en su ARN su propia transcripción, traducción y replicación. ¿Coincidencia o azar? El caso es que sería un apoyo a la idea de que fue el ARN (ribosómico) el que empezó a codificar información y el que comenzó con el metabolismo que ahora encontramos en una célula.

Obviamente, este estudio sólo se ha realizado sobre una cepa de E.coli y habría que investigar mucho más para llegar a confirmar la hipótesis del mundo ARN… o refutarla.

Links de interés:

Francisco R. Villatoro, “La hipótesis del mundo de los ribosomas”, Naukas, 27 Feb 2015.

Francisco R. Villatoro, “The ribosome world hypothesis”, Mapping Ignorance, 27 Feb 2015.

 

Posted in Artículos, Noticias | Tagged , , , , | Leave a comment